MERIF WORKSHOP ORBIT/COSMOS INTRODUCTION

(<u>OPEN ACCESS RESEARCH TESTBED FOR NEXT-GENERATION WIRELESS</u> NETWORKS)/(<u>CLOUD ENHANCED OPEN SOFTWARE DEFINED MOBILE WIRELESS</u> TESTBED FOR CITY-<u>S</u>CALE DEPLOYMENT)

> Michael Sherman, Rutgers University Slides from Ivan Seskar

Orbit Project Rationale (2003)

Wireless testbeds motivated by:

- cost & time needed to develop experimental prototypes
- need for reproducible protocol evaluations
- large-scale system studies (...emergent behavior)
- growing importance of cross-layer protocol studies
- creation of communities for wireless network research
- ORBIT: open-access multi-user facility for experimental wireless networking research primarily in unlicensed bands
 - ~24/7 service facility with remote access
 - open interfaces for flexible layer 2,3 & cross-layer protocols
 - extensive measurements at PHY, MAC and Net layers
 - support for wide range of radio system scenarios

GERS

ORBIT

- Proposal: Build radio grid emulator (phase I) and field trial network (phase II)
- Emulator used for detailed protocol evaluations in reproducible complex radio environments
- Field trial network for further real-world evaluation & application trials

Orbit Hardware

ORBIT Radio Node (2004/2005)

Version 0: COTS:

Proof of concept

Prototyping platform

Version 1: Custom design:

•Functional requirements

Manageability

Power consumption

•Cost

Version 2: Custom design with other attached devices:

•Bluetooth

•ZigBee

•GNU Radio

GERS

ORBIT Radio Node Gen 2 Photo Album

ORBIT Radio Node with integrated Chassis Manager

Non-Grid Node Chassis Manager

TGERS

Version 2.5: Back to COTS (2007)

The COTS 2nd generation node:

- •Off the shelf motherboard
- •Custom indoor or outdoor (weatherproof) enclosure
- •Control manager (CM) with optional GPS and
- GPRS

ORBIT Radio Node Versions

RUTGERS

Fixed Function Radio Devices: 802.11 (a,b,g,n,ac,ad), Zigbee, BT/BLE

RUTGERS

SDR Devices: USRP/USRP2/B210/X310

IF 0-100 MHz (50 MHz transmit)

- 128 MS/s DAC
- 64 MS/s ADC
- USB bus (W = 8 MHz)
- Channelizer code in Altera
 Cyclone FPGA
- 2 RF board slots

- Xilinx Spartan-6 FPGA
- Dual channel AD9361 RFIC transceiver (70 MHz – 6 GHz with 56 MHz baseband)
- USB 3.0 connectivity

- IF -200 MHz (80 MHz receive)
 - 100 MS/s 14-bit dual (IQ) ADCs
 400 MS/s 16-bit dual (IQ) DACs
- Gigabit Ethernet (W = 25 MHz)
- FPGA w/Multipliers (Xilinx Spartan 3), 1 MB SRAM
- 1 RF board slot

- Xilinx Kintex-7 FPGA (XC7K410T)
- 2 x 10 Gigabit Ethernet
- 1 x SBX RF Daughterboard (400-4400 MHz Rx/Tx with 120 MHz baseband)
- 1 x CBX RF Daughterboard
 (1200-6000 MHz Rx/Tx with 120 MHz baseband)

Latest ORBIT Nodes

Movable mini-racks in four corners

8 USRP X310s:

- Dual 160 MHz baseband
- 2 x 10G optical Ethernet interconnects
- Large Kintex FPGA with:

Resource Type	Number
DSP48 Blocks	58K
Block Rams (18 kB)	14K
Logic Cells	7.2M
Slices (LUTs)	1.5M

Core Computing with SDN

Rack with 32 machines:

- 2 x 12 core CPU
- 2 x 25G optical Ethernet interconnects
- 100G TOR SDN switch

ORBIT SDN Deployment

RUTGERS

ORBIT Grid

Sandboxes

To support development and reduce pressure on the grid

- Console and a pair of nodes and devices focused on particular technology

Except for two specialized sandboxes:

SB9 Software Defined Networki ng

nodel-7

10.19.1.7

38

35

nobit-8

10.181.0

...

00061-8

10.19.1.0

tomat-st

10.10.2.1

nodel-11

10 15 1.11

gy

ORBIT Outdoor Infrastructure (WiMAX/LTE)

WINLAB

GENI Wireless Deployment

32 LTE and WiMAX BS on 14 campuses

- SDN (Click and OVS based) datapath/backbone
- Sliced, virtualized and interconnected (100 Gbps) through Internet2
- 10 mini-ORBIT deployments some with SDRs

COSMOS Project Vision

- Latency and compute power are the two new dimensions for characterizing wireless access
- Latency for 4G cellular > 50 ms, while targets for 5G are <10 ms
- Edge computing is an enabler for realtime services
- COSMOS will enable researchers to investigate ultra-high speed (~Gbps), low latency (<5ms), and edge computing (~10-100 GIPS)
- COSMOS = <u>C</u>loud Enhanced <u>Open</u> <u>S</u>oftware Defined <u>Mo</u>bile Wireless Testbed for City-<u>S</u>cale Deployment

System Architecture

- COSMOS architecture has been developed to realize ultra-high BW, low latency and tightly coupled edge computing
- Key design challenge: Gbps performance + full programmability at the radio level
- Developed a fully programmable multi-layered (i.e. radio, network and cloud) system architecture for flexible experimentation

COLUMBIA UNIVERSITY

System Architecture (cont'd)

- System design based on three levels of SDR radio node (S,M,L) with M,L connected via fiber to optical WDM transport
- SDN-based backhaul and compute services, with access to ORBIT, GENI...
- COSMOS control center and general purpose cloud at Rutgers via 32 AoA PoP

COSMOS Network Operations Center (@Rutgers)

COSMOS Deployment in NYC/Uptown Manhattan (@West Harlem)

Planned Deployment

- West Harlem
- Area: ~1 sq. mile
- ~9 Large Sites

- Fiber optic connection from most sites
- ~200 Small nodes
 - Including vehicular and hand-held

- Fiber connection to NYU Data Center, Rutgers, GENI/I2
- Interaction with smart community & innovation initiatives (Gigabit center, etc.)

Key Technologies - SDR

- All-software solution adopted for radio technology
- Advanced SDR Radio Nodes at various performance levels and form factors
- Design goal: 400 Mhz 6 Ghz + 28 Ghz and 60 Ghz bands, ~500 Mhz BW, Gbps

COSMOS SDR Node, SDR Tray and RF Frontend Tray

 Signal processing can be spread between Mobile SDR Node with: B210, B205 radio node & edge cloud RAN

Sub-6GHz SDR Devices

USRP-N310 (Main Monitoring SDR)

System on Chip	Zynq-7100 (Dual-core ARM Cortex-A9 @ 800 MHz)
RAM	1 GB DDR3
Ethernet	2 x 10 Gbps
ADC/DAC	4 x {122.88, 125, 153.6 MS/s} @ 16 bit/@ 14 bit
RF	4 x 10 MHz to 6 GHz / 100 MHz BW
FPGA	Zynq-7100 SoC with 1GB RAM

USRP-2974 (Main Experimentation SDR)

System on module	Congatec COM Express conga-TS170 (Quad Core i7 6822EQ @ 2 GHz)
RAM	8GB DDR4
Ethernet	2 x 10 Gbps
ADC/DAC	2 x 200 MHz @ 14 bit/200 MHz @ 16 bit
RF	2 x 10 MHz to 6 GHz / 160 MHz BW
FPGA	Kintex-7 XC7K410T with 1GB RAM

Key Technologies – mmWave

- mmWave a key new technology for the testbed, with limited availability of components
- Leveraging ongoing CU collaboration with IBM to provide mmWave phased arrays (64 antennas, 8 beams) for 28 Ghz
- Extensive mmWave systems expertise at NYU, including prototype systems and channel measurements

NYU Channel Measurements

Key Technologies – mmWave (cont'd)

4-chip (130nm SiGe, 166 mm2) antenna module with two operation modes:
 2 x 64 element beams or 8 x 16-element beams

Performance Summary	
Elements per chip	32 TX/RX
Elements in package	128 TX/RX
Phase resolution (deg)	5
RMS phase error (deg)	0.8
TX Psat (dBm) per element	16
TX Op1dB (dBm) per element	13.5
TX EIRP per package per pol. @Psat (dBm)	54

- Flip-chip assembly for 4 ICs
- 655 BGA w/ 1.27mm pitch supporting multiple power domains, IF (TX & RX) and LO signals, Digital control and ref clock signals

mmWave Baseband Devices

- Initially: USRP based BB (2 channels @ 100 MHz) with 2 x 10 Gbps
- Full deployment: RFSoC based (up to 8 channels @ 400 MHz) with 100 Gbps

RUTGERS COLUMBIA UNIVERSITY

RF-ADC	8 x 4.096 Gsps @ 12 bit
RF-DAC	8 x 6.554 Gsps @ 14 bit
Logic Cells	930,000
Memory (Mb)	60.5 [Mb]
DSP Slices	4,272
33G Transceivers	16*

of New York

Key Technologies – Optical Net

- Fast and low latency optical x-haul network using 3D MEMS switch and WDM ROADM
 - Configure wide range of topologies
 - Experiment on converged fiber/wireless networks
- Enables fast front-haul/mid-haul/backhaul connectivity between radio nodes and edge cloud
- SDN control plane for both optical and Ethernet switching
- Leverages results from CIAN NSF ERC, EAGER dark fiber project at Columbia

MEMS Switch

CALIENT & Lumentum

- Calient MEMS Space switch
 - 320x320 any to any optical circuit switch
 - ~2db loss, ~25ms switching time
 - Openflow, netconf, etc.
- Lumentum Whitebox20
 - 20 port degree 1 ROADM
 - C band DWDM
 - Supports netconf

Optical Deployment View

Key Technologies – SDN & Cloud

- SDN control plane used to control x-haul and cloud server connectivity
- Open Network Operating System (ONOS) with radio API extensions
- Compute clusters collocated with radio nodes (M,L) with choice of CPU, GPU and FPGA accelerators
- Also, users have access to regular cloud racks for L3→ applications (GENI & CloudLab clusters at WINLAB)

SDN Switching Rack

DELL Switches

- Data Plane switching:
 - Dell Z9100-ON Switches
 - Commodity 100g ethernet switching
 - Broadcom Tomahawk Chipset
 - Openflow 1.3
 - Supports alternate operating systems via ONIE
- Control Plane switching:
 - Dell S4048-ON
 - Cost effective 10g switching
 - Used for physically separate control plane

Compute Nodes

- Dell R740XD
 - Dual 12 Core CPU
 - 192GB Ram
 - Dual 25G NIC w
 RDMA
 - Nvidia V100 GPU
 - Xilinx Alveo U200 FPGA,
 - 2x 100g port

Cloud Architecture

Layer-2 Deployment View

ŔM

COSMOS Summary

- Focus on ultra high bandwidth, low latency, edge cloud
- Open platform (building on ORBIT) integrating mmWave, SDR, and optical xhaul
- 1 sq mile densely populated area in West Harlem
- Local community outreach
- Research community:
 - Develop future experiments, provide input
 - (short term) get involved in the educational outreach

More information:

https://advancedwireless.org/ https://www.orbit-lab.org https://www.cosmos-lab.org

RUTGERS COLUMBIA UNIVERSITY

IBM

