The COSMOS Wireless Testbed

Rutgers University, Columbia University, New York University

Partners: New York City, Silicon Harlem, City College of New York, University of Arizona, IBM

Dipankar Raychaudhuri WINLAB Rutgers University ray@winlab.rutgers.edu Ivan Seskar WINLAB Rutgers University seskar@winlab.rutgers.edu Gil Zussman Electrical Engineering Columbia University Gil.Zussman@columbia.edu

Nov. 2019

COSMOS is part of the NSF PAWR program, and is funded in part by NSF award CNS-1827923, and by the PAWR Industry Consortium

RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Wireless Networking Research - Motivation

Emerging Wireless Paradigms

Channel State Information (CSI) reedback

Multiple-Input Multiple-Output (MIMO Systems) Design

- Transmitter Design
 - Precoder design of closed loop MIMO
 - Cooperative beamforming schemes
 - Time-reversal for frequency selective channel
- Receiver design
 - · Adaptive receiver for wideband systems
 - · Complexity reduction of non-linear receiver
 - · Non-coherent demodulation without CSI knowledge
- MIMO Performance Analysis

Massive MIMO

RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

G ATTENUATION (dB/km)

Summer 2016: Platforms for Advanced Wireless Research (PAWR)

- NSF will invest in 4 city scale testbeds
- Testbed outdoor lab for future wireless technologies
 - These testbeds will be used to support wireless research by industry and academia
 - Contributions from ~30 Industry consortium members

PAWR Consortium Members

Project Team

Dipankar Raychaudhuri Director, WINLAB Professor, ECE, Rutgers U.

Gil Zussman Associate Professor, EE and CS, Columbia U.

Clayton Banks Co-Founder and CEO. Silicon Harlem

COSMOS

Associate Director, WINLAB Rutgers U.

Marco Gruteser Professor, ECE & CS, Rutgers U. ACM Sigmobile Chair

Narayan Mandayam Associate Director, WINLAB Professor & Chair. ECE. Rutgers U.

ECE. NYU

Core Team: Rutgers, Columbia, NYU

Thu D. Nguyen Professor and Chair, CS, Rutgers U.

James Von Oehsen Associate VP, OARC, Rutgers U.

Partners: New York City, Silicon Harlem, CCNY, U. Arizona, IBM

Joshua Breitbart Deputy CTO, NYC

Daniel Kilper Administrative Director, CIAN Adjunct Professor. Columbia U. Research Professor. UA

Bruce Lincoln

Co-Founder, Silicon Harlem

Harish Krishnaswamy Associate Professor, EE, Columbia U.

Sundeep Rangan

Associate Professor, ECE, NYU

Director, NYU Wireless

Henning Schulzrinne Professor, CS, Columbia U.

Zoran Kostic

Thanasis Korakis **Research Assistant Professor**,

Myung Lee Professor ECE, CCNY

Rosemarie Wesson Professor and Associate Dean. CCNY

Associate Professor, EE, Columbia U

Shivendra Panwar Director, CATT

Professor & Chair, ECE, NYU

Sharon Sputz Director, Strategic Programs, Data Science Institute, Columbia U.

Alan Crosswell

Garcia

IBM

Video

https://engineering.columbia.edu/news/nsf-cosmos-testbed

RUTGERS Columbia University

Project Vision

- Latency and compute power are the two new dimensions for characterizing wireless access
- Latency for 4G cellular > 50 ms, while targets for 5G are <10 ms
- Edge computing is an enabler for realtime services
- COSMOS will enable researchers to investigate ultra-high bandwidth (~Gbps), low latency (<5ms), and edge computing (~10-100 GIPS)
- COSMOS = <u>C</u>loud Enhanced <u>Open</u> Software Defined Mobile Wireless Testbed for City-<u>S</u>cale Deployment

of New York

Project Vision

- Ultra-high bandwidth, low latency, and powerful edge computing will enable new classes of real time applications
- Domains include AR, VR, connected car, smart city (with high-bandwidth sensing), industrial control, and education

Industrial Control

Augmented Reality

Objective: Take it Outside

RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Planned Deployment - Vision

- West Harlem
- Area: ~1 sq. mile
- ~9 Large Sites

~40 Medium sites

- Fiber optic connection from most sites
- ~200 Small nodes
 - Including vehicular and hand-held

- Fiber connection to NYU Data Center, Rutgers, GENI/I2
- Interaction with smart community & innovation initiatives (Gigabit center, etc.)

COSMOS Deployment

- Pilot May 2019
- Phase 1 Oct. 2020

COSMOS Pilot – May 2019

- 2 Large, 3 medium, and ~30 small nodes
- Fiber connection: internally and to/from downtown
- Optical core and compute

RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

COSMOS Pilot – May 2019 (Large)

RF Front-ends and Fiber to Large Sector

RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

COSMOS Pilot – May 2019 (Medium)

200-Level (Amsterdam Ave.)

Medium Node Coverages

100-Level (West 120th St.)

Medium Antenna w/ GPS

RUTGERS COLUMBIA UNIVERSITY

COSMOS Pilot – May 2019 (Fiber and Optical Core)

- Fiber connection: internally and to/from downtown
- Core optical switching and compute (ToRs, servers, etc.)

RUTGERS

IN THE CITY OF NEW YORK

COSMOS Pilot – May 2019 (Fiber and Optical Core)

System Architecture

- Key design challenge: Gbps performance + full programmability at the radio level
- Fully programmable multi-layered architecture for flexible experimentation
- Key technologies:
 - Software defined radio
 - mmWave
 - Optical networks
 - Software defined networking and cloud
 - Control and measurement

COSMOS Key Technologies – Software-Defined Radio (SDR)

- All-software solution adopted for radio technology
- Advanced SDR nodes at various performance levels and form factors
- Design goal: 400 MHz 6 GHz + 28/60 GHz bands (with up to ~500 MHz bandwidth), Gbps
- Signal processing can be spread between radio node & edge cloud RAN

COSMOS Large/Medium Nodes

• Different large/medium node configurations have a *subset* of these major components

RUTGERS Columbia University in the city of new york

COSMOS Key Technologies – mmWave

- IBM to provide 28 GHz mmWave phased array modules
 - Up to ~500 MHz BW using the Zyng UltraScale+ RFSoC platforr
 - Experiment with adaptive beamforming and MIMO
 - Alpha version is being integrated in the sandbox -

USKI-2374 (Krypton)

Zyng RFSoC

28 GHz channel measurements in the COSMOS testbed area (collaboration with Bell Labs)

mmWave (28 GHz) phased array antenna module from IBM

NYU channel measurements RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Channel measurements in the COSMOS testbed

The City College

Key Technologies – Optical Networking

- Enables fast connectivity between radio nodes and edge cloud
- Fast and low latency optical x-haul network
 - Configure wide range of topologies
 - Experiment on converged fiber/wireless networks

RUTGERS COLUMBIA UNIVERSITY

Key Technologies – Optical Networking

COSMOS Key Technologies – Cloud Architecture

RUTGERS COLUMBIA UNIVERSITY

Key Technologies – SDN & Cloud

- SDN control plane used to control x-haul and cloud server connectivity
- Compute clusters collocated with radio nodes (M,L) with choice of CPU, GPU and FPGA accelerators
- Users will have access to regular cloud racks for L3→ applications (GENI & CloudLab clusters at WINLAB)

Key Technologies - OMF

- Testbed software is a critical component
- OMF control & management software leveraged from ORBIT
- Provides tools for experiment scripting, execution, measurements and data collection
- Supports high-level experiment scripts for ease of use
- Mature open-source technology, proven in multiple research testbeds worldwide

Experimental Research - Example

Eight internal "**Test Experiments**" to help drive design requirements

Experiment on Full Duploy Wireless

Goal: design and evaluate network
protocols for IC-based full-duplex nodes

Test Experiment - Example

- Deep learning for smart intersections (Kostic)
- Challenges:
 - Pedestrian detection from a bird's eye view
 - Data aggregation
 - Sufficiently deep trajectory prediction (in time)
 - Low latency (edge cloud, optics)

RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Video

https://engineering.columbia.edu/news/verizon-edtech-challenge

RUTGERS COLUMBIA UNIVERSITY

K-12 Education

- Developing a K12 STEM education programs exposing students to hands-on experience and research activities applied to the real world
 - 20 teachers participated in an RET program in Summers 2018 and 2019 (support by AT&T foundation and NSF RET supplements to the PIs grants)
 - Defined scientific areas/existing curriculum that can be supported by labs run remotely on the testbed
 - Built the labs collaboratively (teachers, undergrad/graduate students, postdocs, and faculty)
 - Follow up work as part of Verizon's 5G Education Challenge

2018 COSMOS RET Program Outcome

• The COSMOS Education Toolkit

- A small scale testbed that the teachers will get back to their school to run experiments
- A software suite for the teachers/student to run the labs trough a web-based GUI

COSMOS Educational Toolkit – The web based Curriculum

COSMOS RET Toolkit

COSMOS RET Toolkit provides a curriculum that blends the four disciplines of Mathematics, Science, Computer Science and Art, into a seamless package that helps prepare students to be competitive in an evolving, international workforce. We currently support 47 experiements.

Examples of CS modules created for grades 9-12

Computer Science Labs

RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

COSMOS

EDUCATIONAL TOOLKIT -

Summary

- Focus on ultra high bandwidth, low latency, edge cloud
- Open platform (building on ORBIT) integrating mmWave, Software Defined Radio, and optical x-haul
- Strong community outreach and education component
- For more details:

www.cosmos-lab.org , ray@winlab.rutgers.edu, gil@ee.columbia.edu #pawrcosmos

