COSMOS Optical Demo

https://wiki.cosmos-lab.org/wiki/tutorials/optical-network-example

Craig Gutterman, Columbia University Artur Minakhmetov, Telecom ParisTech Michael Sherman, Rutgers University Jiakai Yu, University of Arizona

clg2168@columbia.edu, artur.minakhmetov@telecom-parsitech.fr, msherman@winlab.rutgers.edu, jiakaiyu@email.arizona.edu

THE UNIVERSITY

Jne école de l'IM1

RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

COSMOS Network Infrastructure

RUTGERS COLUMBIA UNIVERSITY

RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Optical Architecture

- Enables configurable optical network
 - C-RAN
 - Edge computing
 - AR and VR applications
- Components
 - 10G Tunable Transceiver
 - 25G Ethernet interfaces
 - 100G FPGA connection
 - 320x320 Space Switch
 - Optical ROADMs (Reconfigurable Optical Add-Drop Multiplexer)

Optical Architecture

Programmable Topologies

IBM

Programmable Topologies

PON

RUTGERS COLUMBIA UNIVERSITY

Long Reach PON

RUTGERS COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

WDM PON

RUTGERS COLUMBIA UNIVERSITY

MidHaul Network

RUTGERS COLUMBIA UNIVERSITY

Converged mmWave/Fiber Transmission

The City College of New York

EM

mmWave Analog RoF

- Ultra-low latency, simple radio head
 - No digitization until data center
- COSMOS: Sub-6 GHz, plus select routes to 40 GHz
 - Can mix down from higher frequencies

(Figure courtesy of A. Kanno, NICT)

Optical Operation

- Remote experimentation
- User device insertion
- Today: configurable on request
- Future: user configurable
 - Basic topology controls
 - Advanced topology, power, components
 - Requires training to avoid damage to system
- Channels and links may be blocked for management purposes or due to other user reservations

Calient Space Switch

Home >> Summary

Alarms/Events Status Symbol Key REST API Change Password Logou admin [05-20-2019 09:41:8]

Cross Connections Summary - Nr

Group Filter: A												Exp	ort CSV
Count	Group	Connection Name	Connection ID	Dir	Band	Conn - Half	IN Power (dBm)	OUT Power (dBm)	Loss (dB)	Alarm	AS	OS	ос
1	SYSTEM	1.1.1-1.4.1	1.1.1-1.4.1	BI	CBAND	1.1.1>1.4.1 1.4.1>1.1.1	-5.60 -10.60	-7.09 -12.02	1.50 1.42		IS IS	IS IS	OK OK
2	SYSTEM	1.1.2-5.7.1	1.1.2-5.7.1	BI	CBAND	1.1.2>5.7.1 5.7.1>1.1.2	-90.00 -0.19	-90.00 -1.85	-90.00 1.66		UMA UMA	RDY RDY	FAIL
3	SYSTEM	1.4.8-5.8.1	1.4.8-5.8.1	BI	CBAND	1.4.8>5.8.1 5.8.1>1.4.8	1.82 -16.89	-0.04 -17.98	1.87 1.09	a ci	IS IS	IS IS	OK OK
4	SYSTEM	1.7.2-5.7.3	1.7.2-5.7.3	BI	CBAND	1.7.2>5.7.3 5.7.3>1.7.2	-8.61	-10.18	1.57	CL.	IS	IS IS	OK OK
5	SYSTEM	1.7.4-5.5.1	1.7.4-5.5.1	BI	CBAND	1.7.4>5.5.1 5.5.1>1.7.4	-15.84 -18.34	-18.18 -19.88	2.34	a a	IS IS	IS IS	OK OK
6	SYSTEM	2.2.8-1.1.8	2.2.8-1.1.8	BI	CBAND	2.2.8>1.1.8 1.1.8>2.2.8	-3.49	-5.05	1.55		15 15	15 15	OK OK
7	SYSTEM	5.7.4-2.2.2	5.7.4-2.2.2	BI	CBAND	5.7.4>2.2.2 2.2.2>5.7.4	-0.21 -6.10	-2.31 -7.76	2.10		IS IS	IS IS	OK OK
8	SYSTEM	5.7.5-2.2.4	5.7.5-2.2.4	BI	CBAND	5.7.5>2.2.4 2.2.4>5.7.5	0.18	-1.10 -13.44	1.28		IS IS	15 15	OK OK
9	SYSTEM	5.8.2-1.7.8	5.8.2-1.7.8	BI	CBAND	5.8.2>1.7.8 1.7.8>5.8.2	-17.20	-18.46	1.26	CL	IS	IS	OK

() I NYU

Export CSV

ROADM

- 3 Basic Sections
 - 96 chn MUX/DEMUX (WSS)
 - Booster Amplifier
 - Pre-Amplifier
- Single degree, bi-dir. ROADMs
 - Combine to form multi-degree
- Python scripts
 - Booster/Preamp control
 - Booster/Preamp monitor
 - WSS connection Management
 - WSS connection monitor
- RYU SDN Controller

COSMOS Current State: Columbia Uni.

COSMOS Current State: 32 AoA

Fiber to 32 Ave of Americas facilitated by the city and ZenFi

Software Defined Optical Network

Optical Networks built in COSMOS could be SDN-controlled

Request types:

- 1. EDFA configuration
- 2. Ports configuration
- 3. Wavelength configuration

SDN functions:

- 1. RWA algorithm
- 2. NETCONF message
- 3. Resource allocation

Request Definition

1. EDFA configuration

traffic ID + message type + Node ID/IP + EDFA ID + configuration 1 EDFAconfig 10.104.1.1 1 or 2 gain/power values in-service/out-of-service

2. Ports configuration

traffic ID + message type + Node ID/IP + port ID + configuration 1 Portconfig 10.104.1.1 4101-4120 (4201) in-service/out-of-service 5101-5120 (5201)

3. Wavelength configuration

traffic ID + message type + Node ID/IP + Mux/Demux ID + configuration 1 Add/TearDown 10.104.1.1 1 or 2 in-service/out-of-service block/not block start freq/end freq input-port/output-port connection ID

The City College of New York

Optical SDN Control Flow

<sh>

Colocation Site and Data Center @32 AoA

RUTGERS COLUMBIA UNIVERSITY

Set up TOR Switch

- Each compute node has 2 25-Gb Ethernet connections to the TOR switch
- Configure the Interfaces to be set as VLAN switch ports
- Assign TOR and transceivers interfaces to VLANS
- Assign a wavelength (e.g., 1553.3 nm/193 Thz) to each transceiver

•	Check VLANS	NUM	Status	Description	Q Ports		
		121	Active		U Te 1/32/1		
					U Tf 1/1/1		
		122	Active		U Te 1/29/1		
					U Tf 1/1/2		
		123	Active		U Te 1/31/1		
		1.1			U Tf 1/1/3		

Configure VM interfaces and IP addresses

- Preliminary Steps
 - Connect line ports of ROADM4 and ROADM1 using the Calient Switch
 - Connect line Ports of ROADM2 and ROADM3 using the Calient Switch
- Steps
 - Add MUX/DEMUX connection from ROADM4 to TOR1
 - Add MUX/DEMUX connection from ROADM1 to TOR2
- Example code
 - python add_connection.py 10.104.1.4 1 10 in-service
 false 4102 4201 192950 193050 0 Exp1-FromTor1
 - python add_connection.py 10.104.1.4 2 10 in-service
 false 5101 5202 192950 193050 0 Exp1-TorwardTor1
 - python add_connection.py 10.104.1.1 1 10 in-service false 4102 4201 192950 193050 0 Exp1-FromTor2
 - python add_connection.py 10.104.1.1 2 10 in-service false 5101 5202 192950 193050 0 Exp1-TorwardTor2

The City Colleg

python add_connection.py 10.104.1.4 1 10 in-service false 4102 4201192950 193050 0 Exp1-FromTor1

python add_connection.py 10.104.1.4 2 10 in-service false 5101 5202 192950 193050 0 Exp1-TowardTor1

native@srv2-lg1:~\$ ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data. 64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.131 ms 64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.104 ms 64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=0.105 ms 64 bytes from 192.168.1.1: icmp_seq=4 ttl=64 time=0.102 ms 64 bytes from 192.168.1.1: icmp_seq=5 ttl=64 time=0.106 ms 64 bytes from 192.168.1.1: icmp_seq=6 ttl=64 time=0.104 ms 64 bytes from 192.168.1.1: icmp_seq=7 ttl=64 time=0.104 ms 64 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=0.106 ms 64 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=0.106 ms 64 bytes from 192.168.1.1: icmp_seq=9 ttl=64 time=0.105 ms 64 bytes from 192.168.1.1: icmp_seq=10 ttl=64 time=0.105 ms

--- 192.168.1.1 ping statistics ---

10 packets transmitted, 10 received, 0% packet loss, time 9222ms rtt min/avg/max/mdev = 0.102/0.107/0.131/0.010 ms

- Steps
 - Add MUX/DEMUX connection from ROADM4 to TOR1
 - Add MUX/DEMUX connection from ROADM1 to ROADM2
 - Add MUX/DEMUX connection from ROADM2 to ROADM1
 - Add MUX/DEMUX connection from ROADM3 to TOR3

The City Colleg

• Example code

- python add_connection.py 10.104.1.4 1 10 in-service false 4102 4201 192950 193050 0 Exp1-FromTor1
- python add_connection.py 10.104.1.4 2 10 in-service false 5101 5202 192950 193050 0 Exp1-TorwardTor1
- python add_connection.py 10.104.1.1 1 10 in-service false 4101 4201 192950 193050 0 Exp1-ROADM2
- python add_connection.py 10.104.1.1 2 10 in-service false 5101 5201 192950 193050 0 Exp1-ROADM2
- python add_connection.py 10.104.1.2 1 10 in-service false 4101 4201 192950 193050 0 Exp1-ROADM1
- python add_connection.py 10.104.1.2 2 10 in-service false 5101 5201 192950 193050 0 Exp1-ROADM1
- python add_connection.py 10.104.1.3 1 10 in-service false 4102 4201 192950 193050 0 Exp1-FromTor3
- python add_connection.py 10.104.1.3 2 10 in-service false 5101 5202 192950 193050 0 Exp1-TorwardTor3

native@srv3-lg1:~\$ ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data. 64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.449 ms 64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.432 ms 64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=0.434 ms 64 bytes from 192.168.1.1: icmp_seq=4 ttl=64 time=0.433 ms 64 bytes from 192.168.1.1: icmp_seq=5 ttl=64 time=0.425 ms 64 bytes from 192.168.1.1: icmp_seq=6 ttl=64 time=0.435 ms 64 bytes from 192.168.1.1: icmp_seq=7 ttl=64 time=0.434 ms 64 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=0.425 ms 64 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=0.425 ms 64 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=0.425 ms 64 bytes from 192.168.1.1: icmp_seq=9 ttl=64 time=0.426 ms 64 bytes from 192.168.1.1: icmp_seq=9 ttl=64 time=0.426 ms

--- 192.168.1.1 ping statistics ---

10 packets transmitted, 10 received, 0% packet loss, time 9221ms rtt min/avg/max/mdev = 0.425/0.432/0.449/0.025 ms

