[[Include(WikiToC)]] = Savannah: Efficient mmWave Baseband Processing with Minimal and Heterogeneous Resources = === Description === In this tutorial, we demonstrate Savannah, a framework for efficient mmWave baseband processing with minimal and heterogeneous resources. * The instructions for Savannah software can be found [https://github.com/Agora-wireless/Agora/tree/develop here] under [https://docs.renew-wireless.org/license/ RENEW license]. * The COSMOS team contributes to: * Adding the UHD support for the Agora software under the [https://github.com/EttusResearch/uhd/blob/master/LICENSE.md UHD license]; * Updating DSP pipeline (Equalization; Demodulation); * Integrating ACC100 BBDEV acceleration for Decoding. We thank the RENEW team for their support and help throughout the process. The following papers describes the integration of the IBM 28 GHz PAAMs with Savannah in the COSMOS testbed. We would appreciate it if you cite this paper when publishing results obtained using the PAAMs deployed in COSMOS. * Z. Qi, Z. Gao, C. Tung, and T. Chen, "Programmable Millimeter-Wave MIMO Radios with Real-Time Baseband Processing". in Proc. ACM MobiCom'23 Workshop on Wireless Network Testbeds, Experimental evaluation & Characterization (WiNTECH '23), 2023 * Z. Qi*, C. Tung*, A. Kalia, and T. Chen, "Savannah: Efficient mmWave Baseband Processing with Minimal and Heterogeneous Resources". in Proc. 30th Annual International Conference on Mobile Computing and Networking (MobiCom'24), 2024 Authors: \\ Zhenzhou (Tom) Qi, Duke University \\ Chung-Hsuan Tung, Duke University \\ Zhihui Gao, Duke University \\ Tingjun Chen, Duke University Last updated: Sep. 11, 2024 === Prerequisites === In order to access COSMOS-SB2, create a reservation in COSMOS testbed and have it approved by the reservation service. Access to the resources is granted after the reservation is confirmed. Please follow the process shown on the COSMOS getting [https://wiki.cosmos-lab.org/wiki/GettingStarted started page] to get started. === Resources Required === * 2 USRP N310 SDRs ({{{sdr1-s1-lg1}}} and {{{sdr1-md1}}} in SB2) * 2 IBM 28GHz PAAMs ({{{rfdev2-1}}} and {{{rfdev2-2}}} in SB2 ) * 1 Server ({{{srv1-lg1}}}) The current hardware connection in SB2 as shown below * {{{sdr1-s1-lg1}}} RF2 TX/RX -- {{{rfdev2-1}}} IC0/TX/H, {{{sdr1-s1-lg1}}} RF2 RX2 -- {{{rfdev2-1}}} IC1/RX/H * {{{sdr1-s1-lg1}}} RF3 TX/RX -- {{{rfdev2-1}}} IC0/TX/V, {{{sdr1-s1-lg1}}} RF3 RX2 -- {{{rfdev2-1}}} IC1/RX/V * {{{sdr1-md1}}} RF2 TX/RX -- {{{rfdev2-2}}} IC0/TX/H, {{{sdr1-md1}}} RF2 RX2 -- {{{rfdev2-2}}} IC1/RX/H * {{{sdr1-md1}}} RF3 TX/RX -- {{{rfdev2-2}}} IC0/TX/V, {{{sdr1-md1}}} RF2 RX2 -- {{{rfdev2-2}}} IC1/RX/V || [[Image(PAAM-2_2 .png, 600px)]] ||