| 1 | [[Include(WikiToC)]] |
| 2 | |
| 3 | == Setting up a Virtual/Simulated Optical Network using the Mininet-Optical Software Emulator == |
| 4 | This wiki page contains a tutorial for setting up an optical network using [https://mininet-optical.org Mininet-Optical]. |
| 5 | |
| 6 | This is a Mininet-Optical version of the tutorial at [wiki:Tutorials/Optical/Tutorial1]. It is intended to show how an experiment designed for the COSMOS testbed may be adapted for use in a software emulation environment, and how Mininet-Optical may be used to design experiments that will later be run on the COSMOS hardware testbed. |
| 7 | |
| 8 | Please refer to [wiki:Tutorials/Optical/Tutorial1] for comparison between the hardware and software testbed environments. |
| 9 | |
| 10 | Author: Bob Lantz |
| 11 | |
| 12 | Original Authors: |
| 13 | |
| 14 | Artur Minakhmetov, Telecom Paris : artur.minakhmetov[at]telecom-paris.fr\\ |
| 15 | Craig Gutterman, Columbia University : clg2168[at]columbia.edu\\ |
| 16 | Michael Sherman, Rutgers University : msherman[at]winlab.rutgers.edu\\ |
| 17 | Jiakai Yu, University of Arizona : jiakaiyu[at]email.arizona.edu\\ |
| 18 | Tingjun Chen, Columbia University: tc2668[at]columbia.edu\\ |
| 19 | |
| 20 | Change Log |
| 21 | |
| 22 | 26 July 2022: created new version for Mininet-Optical. |
| 23 | |
| 24 | ---- |
| 25 | = Description = |
| 26 | The COSMOS testbed enables creation and use of optical networks of various topologies. An example of how an optical network could be configured and used is provided. A simple experiment on switching of optical paths is described. |
| 27 | |
| 28 | ---- |
| 29 | |
| 30 | = Compute Nodes and ToR switch interfaces used = |
| 31 | |
| 32 | * Each compute node has 1 Ethernet interface: |
| 33 | {{{ |
| 34 | server1-eth0 |
| 35 | server2-eth0 |
| 36 | server2-eth0 |
| 37 | }}} |
| 38 | |
| 39 | * There are three ToR Ethernet interfaces: |
| 40 | {{{ |
| 41 | tor1-eth111 |
| 42 | tor2-eth112 |
| 43 | tor3-eth113 |
| 44 | }}} |
| 45 | |
| 46 | * and three WDM transceivers, with separate output and input ports: |
| 47 | |
| 48 | {{{ |
| 49 | tor1-wdm320/321 |
| 50 | tor2-wdm290/291 |
| 51 | tor3-wdm310/311 |
| 52 | }}} |
| 53 | |
| 54 | |
| 55 | ---- |
| 56 | |
| 57 | = Experiment_1 Context = |
| 58 | || [[Image(Experiment_1.png, width=500px)]] || |
| 59 | Fig.1 Logical Topology of Experiment_1 |
| 60 | |
| 61 | The experiment consists of changing the light path from ToR1<-->ToR2 to ToR1<-->ToR3, representing changing of the light path in a C-RAN when “Client” wants to move its base-band processing from “Edge Cloud” to “Central Cloud”. |
| 62 | |
| 63 | Experiment includes 3 servers: |
| 64 | {{{ |
| 65 | server1 |
| 66 | server2 |
| 67 | server3 |
| 68 | }}} |
| 69 | |
| 70 | Experiment includes 4 ROADMs: |
| 71 | {{{ |
| 72 | roadm1 (localhost:1831) |
| 73 | roadm2 (localhost:1832) |
| 74 | roadm3 (localhost:1833) |
| 75 | roadm4 (localhost:1844) |
| 76 | }}} |
| 77 | |
| 78 | |
| 79 | 3 ToR interfaces are connected to the 3 servers: |
| 80 | |
| 81 | {{{ |
| 82 | tor1-eth111 <--> server1 |
| 83 | tor2-eth112 <--> server2 |
| 84 | tor3-eth113 <--> server3 |
| 85 | }}} |
| 86 | |
| 87 | |
| 88 | 3 Ethernet interfaces and 3 WDM transceivers will be connected within the ToR switch: |
| 89 | |
| 90 | {{{ |
| 91 | tor1-eth111 ; tor1-wdm320/321 (output/input) |
| 92 | tor2-eth112 ; tor2-wdm290/291 (output/input) |
| 93 | tor3-eth113 ; tor3-wdm310/311 (output/input) |
| 94 | }}} |
| 95 | |
| 96 | |
| 97 | We are assigning next wavelengths to the transceivers: |
| 98 | |
| 99 | {{{ |
| 100 | 1553,30 nm 193,00 with bandwidth ~[192.95;193.05] Thz |
| 101 | This corresponds to channel XX in Mininet-Optical's default channel grid. |
| 102 | }}} |
| 103 | |
| 104 | |
| 105 | ---- |
| 106 | = Setting Up the Optical Topology = |
| 107 | |
| 108 | In the COSMOS optical testbed, all devices are connected to a Calient S320 space switch. This switch serves as a programmable patch panel that allows any port to be connected to any other port, enabling realization of arbitrary topologies with fast reconnection between experiments. |
| 109 | |
| 110 | It is possible to create a virtual space switch/programmable patch panel in Mininet-Optical to emulate the COSMOS optical testbed itself, but for this tutorial we will implement the topology using Mininet-Optical's topology API. |
| 111 | |
| 112 | The Mininet-Optical emulated network is created using a Python script, examples/cosmostutorial.py. Take a look at it now to see how the topology is implemented. |
| 113 | |
| 114 | The topology itself is created using Mininet's high-level topology template API. Specifically, we create a subclass of class Topo and override the build() method: |
| 115 | |
| 116 | |
| 117 | {{{#!python |
| 118 | class TutorialTopo( Topo ): |
| 119 | ... |
| 120 | def build( self ): |
| 121 | }}} |
| 122 | |
| 123 | |
| 124 | ROADMs and ToR switches are added using addSwitch() calls: |
| 125 | |
| 126 | {{{#!python |
| 127 | # ROADMs |
| 128 | NC = NetconfPortBase |
| 129 | roadm4 = self.addSwitch('roadm4', cls=LROADM, netconfPort=NC+4) |
| 130 | ... |
| 131 | # ToR switches |
| 132 | tor1 = self.addSwitch('tor1', cls=Terminal, transceivers=[('32', 0*dBm)]) |
| 133 | ... |
| 134 | }}} |
| 135 | |
| 136 | Servers are added using addHost calls: |
| 137 | |
| 138 | {{{#!python |
| 139 | class TutorialTopo( Topo ): |
| 140 | # Servers |
| 141 | server1 = self.addHost('server1') |
| 142 | ... |
| 143 | }}} |
| 144 | |
| 145 | In Mininet, ports are created by specifying port numbers when we add links. |
| 146 | (This is due to the underlying link emulation which uses Linux virtual Ethernet (veth) |
| 147 | pairs.) |
| 148 | |
| 149 | Because of this, we need to specify the correct port numbers when we create the links. |
| 150 | |
| 151 | The base port numbers for a Lumentum ROADM20 are specified at the top of the file: |
| 152 | |
| 153 | {{{#!python |
| 154 | # Lumentum Roadm20 Port numbering |
| 155 | LINEIN, LINEOUT = 5101, 4201 |
| 156 | ADD, DROP = 4100, 5200 |
| 157 | }}} |
| 158 | |
| 159 | The server and ToR port numbers are as specified above. |
| 160 | |
| 161 | WDM fiber links are unidirectional and are added using wdmLink calls: |
| 162 | {{{#!python |
| 163 | # Inter-ROADM links |
| 164 | # We put 22km of fiber between roadm2 and roadm3 |
| 165 | # Default fiber length is 1m if not specified |
| 166 | ... |
| 167 | self.wdmLink(roadm2, roadm3, LINEOUT, LINEIN, spans=[22*km]) |
| 168 | self.wdmLink(roadm3, roadm2, LINEOUT, LINEIN, spans=[22*km]) |
| 169 | ... |
| 170 | # ROADM add/drop 2 <-> ToR transceiver links |
| 171 | self.wdmLink(tor1, roadm4, 320, ADD+2) |
| 172 | self.wdmLink(roadm4, tor1, DROP+2, 321) |
| 173 | }}} |
| 174 | |
| 175 | We can see that LINEOUT of roadm2 is connected to LINEIN of roadm3 and vice-versa, |
| 176 | with a 22km length of fiber in between, corresponding to a fiber spool in |
| 177 | the COSMOS testbed. Later, add/drop port 2 of roadm4 is connected to ports |
| 178 | 320/321 of tor1 (output/input, respectively). |
| 179 | |
| 180 | Ethernet links are added sing addLink() calls: |
| 181 | {{{#!python |
| 182 | # Server<->ToR Ethernet links |
| 183 | self.addLink(server1, tor1, port1=0, port2=1) |
| 184 | self.addLink(server2, tor2, port1=0, port2=2) |
| 185 | self.addLink(server3, tor3, port1=0, port2=3) |
| 186 | }}} |
| 187 | |
| 188 | ---- |
| 189 | |
| 190 | |
| 191 | WORK IN PROGRESS!!! |
| 192 | |
| 193 | ... |
| 194 | |
| 195 | |
| 196 | |
| 197 | = ROADMs Configuration = |
| 198 | All of these configurations can be performed by Python scripts developed to work with the COSMOS test-bed. The Python commands send NETCONF commands to the ROADM. |
| 199 | |
| 200 | == Setting “Snake” Connection == |
| 201 | Correct ROADM operation requires Line In port of a ROADM to always receive a light. That is why there is a dedicated transceiver (tengigabitethernet 1/33 on ToR) that sends light through all ROADMs by passing through loop-back connection on Calient S320 (port 5.5.1) and redirecting back, so the light is received on the same transceiver. |
| 202 | This kind of connection is called “Snake”. |
| 203 | |
| 204 | In order maintain this “Snake” for “Experiment_1” next connections form Table 1 must be in place: 1,3,5,6,8,9. |
| 205 | |
| 206 | === tengigabitethernet 1/33/1 on ToR configuration === |
| 207 | |
| 208 | Snake Interface (to passe through all ROADMs in loop): 60 (DWDM Channel C60) 1529,55 nm 196,00 Thz with frequency range [195.95,196.05] Thz |
| 209 | |
| 210 | === MUX/DEMUX configuration === |
| 211 | |
| 212 | * ROADM 4: |
| 213 | DEMUX IN/OUT port: 5101/5204 |
| 214 | MUX IN/OUT port: 4104/4201 |
| 215 | * ROADM 1: |
| 216 | DEMUX IN/OUT port: 5101/5201 |
| 217 | MUX IN/OUT port: 4101/4201 |
| 218 | * ROADM 2: |
| 219 | DEMUX IN/OUT port: 5101/5201 |
| 220 | MUX IN/OUT port: 4101/4201 |
| 221 | * ROADM 3: |
| 222 | DEMUX IN/OUT port: 5101/5204 |
| 223 | MUX IN/OUT port: 4104/4201 |
| 224 | |
| 225 | === ALS Disable Sequence (for 60 seconds) === |
| 226 | |
| 227 | 1. ROADM 4 booster, |
| 228 | 2. ROADM 2 booster, |
| 229 | 3. ROADM 3 booster, |
| 230 | 4. ROADM 1 booster, |
| 231 | |
| 232 | == Setting “Experiment_1” Connections == |
| 233 | |
| 234 | === Configuring ToR1<->ToR2 Connection 1 === |
| 235 | |
| 236 | * ROADM 4: |
| 237 | 1. Enable MUX port 4102 “From ToR 1” |
| 238 | 2. Add Connection “Exp1-FromTor1” with Input/ Output Port 4102/4201 with bandwidth [192.95;193.05] (python add_connection.py 10.104.1.4 1 10 in-service false 4102 4201 192950 193050 5 Exp1-FromTor1) |
| 239 | 3. Enable DEMUX port 5202 “Towards ToR 1” |
| 240 | 4. Add Connection “Exp1-TorwardTor1” with I/O Port 5101/5202 (python add_connection.py 10.104.1.4 2 10 in-service false 5101 5202 192950 193050 5 Exp1-TorwardTor1) |
| 241 | * ROADM 1: |
| 242 | 5. Enable MUX port 4102 “From ToR 2” |
| 243 | 6. Add Connection “From ToR 2” with I/O Port 4102/4201 with bandwidth [192.95;193.05] |
| 244 | 7. Enable DEMUX port 5202 “Towards ToR 2” |
| 245 | 8. Add Connection “Towards ToR 2” with I/O Port 5101/5202 |
| 246 | |
| 247 | === Configuting ToR1<->ToR3 Connection 2 === |
| 248 | |
| 249 | * ROADM 4 (Same As For Connection 1): |
| 250 | 1. Enable MUX port 4102 “From ToR 1” |
| 251 | 2. Add Connection “From ToR 1” with I/O Port 4102/4201 with bandwidth [192.95;193.05] |
| 252 | 3. Enable DEMUX port 5202 “Towards ToR 1” |
| 253 | 4. Add Connection “Towards ToR 1” with I/O Port 5101/5202 with bandwidth [192.95;193.05] |
| 254 | * ROADM 1 <Not Same!>: |
| 255 | 5. Enable MUX port 4101 “Through Port” (enabled for Snake) |
| 256 | 6. Add Connection “Through In” with I/O Port 4101/4201 with bandwidth [192.95;193.05] |
| 257 | 7. Enable DEMUX port 5201 “Through Port” (enabled for Snake) |
| 258 | 8. Add Connection “Through Out” with I/O Port 5101/5201 with bandwidth [192.95;193.05] |
| 259 | * ROADM 2 (Same As For ROADM1): |
| 260 | 9. Enable MUX port 4101 “Through Port” (enabled for Snake) |
| 261 | 10. Add Connection “Through In” with I/O Port 4101/4201 with bandwidth [192.95;193.05] |
| 262 | 11. Enable DEMUX port 5201 “Through Port” (enabled for Snake) |
| 263 | 12. Add Connection “Through Out” with I/O Port 5101/5201 with bandwidth [192.95;193.05] |
| 264 | * ROADM 3 (Same As For ROADM4): |
| 265 | 13. Enable MUX port 4102 “From ToR 3” |
| 266 | 14. Add Connection “From ToR 3” with I/O Port 4102/4201 with bandwidth [192.95;193.05] |
| 267 | 15. Enable DEMUX port 5202 “Towards ToR 3” |
| 268 | 16. Add Connection “Towards ToR 3” with I/O Port 5101/5202 with bandwidth [192.95;193.05] |
| 269 | |
| 270 | ---- |
| 271 | |
| 272 | = Network Interfaces Configuration for Experiment_1 = |
| 273 | == Setting Up ToR switch with 3 logical ToR switches == |
| 274 | 1. Preparing the interfaces to be set as VLAN switch ports: |
| 275 | |
| 276 | {{{ |
| 277 | sw-tor-lg1#configure |
| 278 | sw-tor-lg1(conf)#interface twentyFiveGigE 1/1/1 |
| 279 | sw-tor-lg1(conf-if-tf-1/1/1)#switchport |
| 280 | sw-tor-lg1(conf-if-tf-1/1/1)#no shutdown |
| 281 | sw-tor-lg1(conf-if-tf-1/1/1)#exit |
| 282 | sw-tor-lg1(conf)#interface twentyFiveGigE 1/1/2 |
| 283 | sw-tor-lg1(conf-if-tf-1/1/2)#switchport |
| 284 | sw-tor-lg1(conf-if-tf-1/1/2)#no shutdown |
| 285 | sw-tor-lg1(conf-if-tf-1/1/2)#exit |
| 286 | sw-tor-lg1(conf)#interface twentyFiveGigE 1/1/3 |
| 287 | sw-tor-lg1(conf-if-tf-1/1/3)#switchport |
| 288 | sw-tor-lg1(conf-if-tf-1/1/3)#no shutdown |
| 289 | sw-tor-lg1(conf-if-tf-1/1/3)#exit |
| 290 | sw-tor-lg1(conf)#interface tengigabitethernet 1/31/1 |
| 291 | sw-tor-lg1(conf-if-te-1/31/1)#switchport |
| 292 | sw-tor-lg1(conf-if-te-1/31/1)#no shutdown |
| 293 | sw-tor-lg1(conf-if-te-1/31/1)#exit |
| 294 | sw-tor-lg1(conf)#interface tengigabitethernet 1/29/1 |
| 295 | sw-tor-lg1(conf-if-te-1/29/1)#switchport |
| 296 | sw-tor-lg1(conf-if-te-1/29/1)#no shutdown |
| 297 | sw-tor-lg1(conf-if-te-1/29/1)#exit |
| 298 | sw-tor-lg1(conf)#interface tengigabitethernet 1/32/1 |
| 299 | sw-tor-lg1(conf-if-te-1/32/1)#switchport |
| 300 | sw-tor-lg1(conf-if-te-1/32/1)#no shutdown |
| 301 | sw-tor-lg1(conf-if-te-1/32/1)#exit |
| 302 | }}} |
| 303 | |
| 304 | 2. Assigning interfaces to VLANs |
| 305 | |
| 306 | {{{ |
| 307 | sw-tor-lg1#configure |
| 308 | sw-tor-lg1(conf)#interface vlan 121 |
| 309 | sw-tor-lg1(conf-if-vl-121)#untagged twentyFiveGigE 1/1/1 |
| 310 | sw-tor-lg1(conf-if-vl-121)#untagged tengigabitethernet 1/32/1 |
| 311 | sw-tor-lg1(conf-if-vl-121)#exit |
| 312 | sw-tor-lg1(conf)#interface vlan 122 |
| 313 | sw-tor-lg1(conf-if-vl-122)#untagged twentyFiveGigE 1/1/2 |
| 314 | sw-tor-lg1(conf-if-vl-122)#untagged tengigabitethernet 1/29/1 |
| 315 | sw-tor-lg1(conf-if-vl-122)#exit |
| 316 | sw-tor-lg1(conf)#interface vlan 123 |
| 317 | sw-tor-lg1(conf-if-vl-123)#untagged twentyFiveGigE 1/1/3 |
| 318 | sw-tor-lg1(conf-if-vl-123)#untagged tengigabitethernet 1/31/1 |
| 319 | sw-tor-lg1(conf-if-vl-123)#exit |
| 320 | sw-tor-lg1(conf)#exit |
| 321 | }}} |
| 322 | |
| 323 | 3. Assigning a wavelength to transceivers: |
| 324 | |
| 325 | {{{ |
| 326 | sw-tor-lg1#configure |
| 327 | sw-tor-lg1(conf)#interface tengigabitethernet 1/32/1 |
| 328 | sw-tor-lg1(conf-if-te-1/32/1)#wavelength 1553.3 |
| 329 | sw-tor-lg1(conf-if-te-1/32/1)#exit |
| 330 | sw-tor-lg1(conf)#interface tengigabitethernet 1/29/1 |
| 331 | sw-tor-lg1(conf-if-te-1/29/1)#wavelength 1553.3 |
| 332 | sw-tor-lg1(conf-if-te-1/29/1)#exit |
| 333 | sw-tor-lg1(conf)#interface tengigabitethernet 1/32/1 |
| 334 | sw-tor-lg1(conf-if-te-1/32/1)#wavelength 1553.3 |
| 335 | sw-tor-lg1(conf-if-te-1/32/1)#exit |
| 336 | sw-tor-lg1(conf)#exit |
| 337 | }}} |
| 338 | |
| 339 | 4. Verify VLANs: |
| 340 | |
| 341 | {{{ |
| 342 | sw-tor-lg1#show vlan |
| 343 | |
| 344 | Codes: * - Default VLAN, G - GVRP VLANs, R - Remote Port Mirroring VLANs, P - Primary, C - Community, I - Isolated |
| 345 | O - Openflow, Vx - Vxlan |
| 346 | Q: U - Untagged, T - Tagged |
| 347 | x - Dot1x untagged, X - Dot1x tagged |
| 348 | o - OpenFlow untagged, O - OpenFlow tagged |
| 349 | G - GVRP tagged, M - Vlan-stack |
| 350 | i - Internal untagged, I - Internal tagged, v - VLT untagged, V - VLT tagged |
| 351 | |
| 352 | NUM Status Description Q Ports |
| 353 | 121 Active U Te 1/32/1 |
| 354 | U Tf 1/1/1 |
| 355 | 122 Active U Te 1/29/1 |
| 356 | U Tf 1/1/2 |
| 357 | 123 Active U Te 1/31/1 |
| 358 | U Tf 1/1/3 |
| 359 | |
| 360 | }}} |
| 361 | |
| 362 | == Configuring Compute Nodes (Servers srv1..3-lg1) == |
| 363 | |
| 364 | 1. Install net-tools: |
| 365 | |
| 366 | {{{#!shell-session |
| 367 | sudo apt install net-tools |
| 368 | }}} |
| 369 | |
| 370 | 2. Configure interfaces eo1 and assign IP addresses: |
| 371 | |
| 372 | {{{#!shell-session |
| 373 | native@srv1-lg1:~$ sudo ifconfig eno1 192.168.1.1 netmask 255.255.255.0 |
| 374 | native@srv2-lg1:~$ sudo ifconfig eno1 192.168.1.2 netmask 255.255.255.0 |
| 375 | native@srv3-lg1:~$ sudo ifconfig eno1 192.168.1.3 netmask 255.255.255.0 |
| 376 | }}} |
| 377 | |
| 378 | |
| 379 | ---- |
| 380 | = Perform Experiment_1 = |
| 381 | |
| 382 | 1. Establish Connection ToR1<->ToR2. |
| 383 | 2. Try Ping from Srv1 to Srv2: |
| 384 | |
| 385 | {{{#!shell-session |
| 386 | native@srv1-lg1:~$ ping 192.168.1.3 |
| 387 | PING 192.168.1.3 (192.168.1.3) 56(84) bytes of data. |
| 388 | 64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.460 ms |
| 389 | 64 bytes from 192.168.1.3: icmp_seq=2 ttl=64 time=0.423 ms |
| 390 | }}} |
| 391 | |
| 392 | 3. Establish Connection ToR1<->ToR2. |
| 393 | 4. Try Ping from Srv1 to Srv3. |