wiki:Tutorials/4G5G/openairinterface5G

OpenAirInterface (OAI) 5G SA Network with CU/DU Split

Purpose

This tutorial contains instructions based on OAI's 5G SA network with Central Unit(CU)/Distributed Unit(DU) split, connecting to available commodity off-the-shelf (COTS) in the ORBIT Testbed.

As OAI is implemented for the network, the tutorial will provide instructions for setting up the following:

  • SA gNB
  • OAI 5GCore
  • User Equipments (UEs) simulators that run on COTS devices

Typically, 5G NR base stations prioritize hardware and monolithic networks, but for this tutorial, the software cellular base station and UE consists of a Orbit Nodes connected to a personal software-defined radio (SDR). Thereby, the OAI software can processing signals sent to and received from the SDR.

Available SDRs on Orbit that can implement OAI software:

  • B200/B210
  • N310
  • X310
  • X2974

In this tutorial, we will utilize ORBIT's GRID. Preferably, we will choose node8-14 and node13-14, since it is more reliable to test with B210s.

Prerequisites

For access to the ORBIT testbed, create a reservation in the grid reservation and have it approved by the reservation service. Link to the reservations here.

Access to the resources is granted after the reservation is confirmed. Please follow the process shown on the COSMOS getting started page to get started.

Resources required

As stated before:

  • 2 ORBIT nodes on the grid network (B210s preferably in node8-14 and node13-14)
  • UE Connection either via another grid node or sdr1-in3 or srv1-in3 to access the UE in COSMOS SB1 domain

Choices for UEs:

1) SIMCOM SIM8200EA-M2 USB modem on sdr1-in3.sb1.cosmos.

2) OnePlus8T KB2005 phone (remotely accessible on srv1-in3.sb1.cosmos).

3) Manual setup, which will be discussed later.

Tutorial Setup

Follow the steps below to gain access to the sandbox 1 console and set up nodes with appropriate images.

  1. If you don't have one already, sign up for a COSMOS account
  2. Create a resource reservation on sandbox 1
  3. Login into sandbox 1 console (console.sb1.cosmos-lab.org).
  4. Make sure all the resources in the domain are turned off:
    omf tell -a offh -t system:topo:allres  
    
    In this tutorial, for the Amarisoft base station we will be using the SB1 server srv2-lg1, and the USRP N310 sdr1-s1-lg1.
  5. Load amarisoft-tutorial-cosmos.ndz on srv2-lg1.
    omf load -i amarisoft-tutorial-cosmos.ndz -t srv2-lg1
    
  6. To access the UE, Waveshare SIM8200 USB modem connected to sdr1-in3, load the image waveshare-sim8200.ndz on sdr1-in3. This image has the SIMCOM network drivers installed to control the modem.
    omf load -i waveshare-sim8200.ndz -t sdr1-in3
    
  7. To access the phones connected to srv1-in3, load the image vysor-cosmos.ndz on srv1-in3. This image has [Vysor https://www.vysor.io/] and chrome remote desktop client installed in order to provide remote access to the phones.
    omf load -i vysor-cosmos.ndz -t srv1-in3
    
  8. Turn all the required resources on and check the status
    omf tell -a on -t srv2-lg1,sdr1-s1-lg1,sdr1-in3,srv1-in3
    
    omf stat -t system:topo:allres
    

Tutorial Execution

Run the Amarisoft base station

Check the USRP

  • Log in to the server srv2-lg1 with 2 SSH sessions.
    ssh root@srv2-lg1
    
  • Upon logging into the server, run eth_config.sh. This sets up the 10G data interfaces DATA1, DATA2. After running the script, you should see that the data interfaces have the appropriate IP addresses assigned, as per this table. The server should then be able to access the USRP N310 sdr1-md1 which can be checked by running uhd_find_devices.
root@srv2-lg1:~# ./eth_config.sh
root@srv2-lg1:~# ifconfig DATA1
DATA1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 9000
        inet 10.38.1.2  netmask 255.255.0.0  broadcast 10.38.255.255
        inet6 fe80::ba59:9fff:fedd:bd94  prefixlen 64  scopeid 0x20<link>
        ether b8:59:9f:dd:bd:94  txqueuelen 1000  (Ethernet)
        RX packets 2764979088  bytes 8198039666643 (8.1 TB)
        RX errors 0  dropped 295845  overruns 0  frame 0
        TX packets 3653147129  bytes 11884176775843 (11.8 TB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

root@srv2-lg1:~# ifconfig DATA2
DATA2: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 9000
        inet 10.39.1.2  netmask 255.255.0.0  broadcast 10.39.255.255
        inet6 fe80::ba59:9fff:fedd:bd95  prefixlen 64  scopeid 0x20<link>
        ether b8:59:9f:dd:bd:95  txqueuelen 1000  (Ethernet)
        RX packets 334886  bytes 31982544 (31.9 MB)
        RX errors 0  dropped 295867  overruns 0  frame 0
        TX packets 10148  bytes 3378247 (3.3 MB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0
root@srv2-lg1:~# uhd_find_devices
[INFO] [UHD] linux; GNU C++ version 7.5.0; Boost_106501; UHD_3.15.0.0-release
--------------------------------------------------
-- UHD Device 0
--------------------------------------------------
Device Address:
    serial: 3176DF5
    addr: 10.38.2.1
    claimed: False
    mgmt_addr: 10.37.2.1
    mgmt_addr: 10.38.2.1
    mgmt_addr: 10.39.2.1
    product: n310
    type: n3xx
  • Notice the IP addresses of the N310 - 10.37.2.1 is the 1G management interface, where as the other 2 are 10G data interfaces.

Run the MME

  • We are going to run the MME, gNodeB on srv2-lg1.
  • Run the Amarisoft MME on srv2-lg1. Run lte_init.sh to setup IP forwarding so that the UEs can connect to the Internet, once they establish a connection with the base station. This network uses PLMN 310014 (USA Test network) as configured in mme.cfg.
    root@srv2-lg1:~# cd /opt/amarisoft/ltemme-linux-2022-09-16
    root@srv2-lg1:/opt/amarisoft/ltemme-linux-2022-09-16# ./lte_init.sh
    Select CTRL default interface
    Configure NAT for CTRL
    net.ipv4.tcp_congestion_control = bbr
    net.core.rmem_max = 50000000
    net.core.wmem_max = 5000000
    root@srv2-lg1:/opt/amarisoft/ltemme-linux-2022-09-16# ./ltemme config/mme.cfg
    Core version 2022-09-16, Copyright (C) 2012-2022 Amarisoft
    This software is licensed to Rutgers University (The State University of New Jersey).
    License server: license.orbit-lab.org (0b-b4-46-dc-2f-83-58-cb)
    Support and software update available until 2023-08-18.
    
    (mme)
    
  • Type 'help' at the prompt to explore the available mme commands.

Run the gNodeB

  • Run Amarisoft 5G NR Stand alone gNodeB as shown below by passing the gNodeB configuration file as an argument. The configuration file defines SDR(USRP N310) address, operating band, bandwidth and other parameters.
    root@srv2-lg1:~# cd /opt/amarisoft/lteenb-linux-2022-09-16
    root@srv2-lg1:/opt/amarisoft/lteenb-linux-2022-09-16#
    root@srv2-lg1:/opt/amarisoft/lteenb-linux-2022-09-16# ./lteenb config/gnb-sa-n310.cfg
    Base Station version 2022-09-16, Copyright (C) 2012-2022 Amarisoft
    This software is licensed to Rutgers University (The State University of New Jersey).
    License server: license.orbit-lab.org (0b-b4-46-dc-2f-83-58-cb)
    Support and software update available until 2023-08-18.
    
    [INFO] [UHD] linux; GNU C++ version 7.5.0; Boost_106501; UHD_3.15.0.0-release
    [INFO] [MPMD] Initializing 1 device(s) in parallel with args: mgmt_addr=10.38.2.1,type=n3xx,product=n310,serial=3176DF5,claimed=False,addr=10.38.2.1,master_clock_rate=122.88e6
    [INFO] [MPM.PeriphManager] init() called with device args `master_clock_rate=122.88e6,clock_source=internal,product=n310,time_source=internal,mgmt_addr=10.38.2.1'.
    [INFO] [0/Replay_0] Initializing block control (NOC ID: 0x4E91A00000000004)
    [INFO] [0/Radio_0] Initializing block control (NOC ID: 0x12AD100000011312)
    [INFO] [0/Radio_1] Initializing block control (NOC ID: 0x12AD100000011312)
    [INFO] [0/DDC_0] Initializing block control (NOC ID: 0xDDC0000000000000)
    [INFO] [0/DDC_1] Initializing block control (NOC ID: 0xDDC0000000000000)
    [INFO] [0/DUC_0] Initializing block control (NOC ID: 0xD0C0000000000002)
    [INFO] [0/DUC_1] Initializing block control (NOC ID: 0xD0C0000000000002)
    [INFO] [0/FIFO_0] Initializing block control (NOC ID: 0xF1F0000000000000)
    [INFO] [0/FIFO_1] Initializing block control (NOC ID: 0xF1F0000000000000)
    [INFO] [0/FIFO_2] Initializing block control (NOC ID: 0xF1F0000000000000)
    [INFO] [0/FIFO_3] Initializing block control (NOC ID: 0xF1F0000000000000)
    RF0: sample_rate=30.720 MHz dl_freq=2589.420 MHz ul_freq=2589.420 MHz (band n41) dl_ant=2 ul_ant=1
    Warning, CPU hyperthreading is enabled, we do not recommend using it.
    (enb) WARNING: The GPS is not locked. If you need time synchronization, you should restart the program when the GPS is locked.
    Chan Gain(dB)   Freq(MHz)
     TX1     45.0 2589.420000
     TX2     45.0 2589.420000
     RX1     50.0 2589.420000
    
    (enb) ng
    gNB NG connection state:
      - server=127.0.1.100:38412 state=setup_done PLMN=310014
    (enb) cell phy
    [gnb0012345] PLMN=310014 gNB_ID=0x12345
    --------Global-------- -----------DL---------- -----------UL---------- -----SSB---
    Cell    RAT BAND  BW P   ARFCN ANT NL SCS  QAM   ARCFN ANT NL SCS  QAM   ARFCN SCS
    0x001    NR  n41  20 0  517884   2  2  30  256  517884   1  1  30  256  517710  30
    (enb)
    
    
  • Type 'help' at the prompt and use commands like 'cell phy' to look at the various parameters of the base station.

SIM8200 UE

  • As the base station runs,SIM8200 modem on srv1-in1 communicates with the base station and registers to the network. You can see eNodeb trace similar to the one below.
    (enb) t
    Press [return] to stop the trace
    PRACH: cell=01 seq=5 ta=18 snr=16.7 dB
                   ----DL----------------------- ----UL------------------------------------------------
    UE_ID  CL RNTI C cqi ri  mcs retx txok brate C  snr puc1  mcs rxko rxok brate     #its phr  pl   ta
       11 001 460b 1  15  2 16.8    4    9 5.53k 1 33.1   -  20.5    0    5 2.18k  1/1.4/2  28  50 -0.2
       11 001 460b 1  15  2 24.0    1    4 3.24k 1 33.1   -     -    0    0     0        -  28  50    -
       11 001 460b 1  15  2 24.0    1    4 3.24k 1 33.1   -     -    0    0     0        -  28  50    -
       11 001 460b 1  15  2 23.0    0    4 3.60k 1 33.1   -     -    0    0     0        -  28  50    -
       11 001 460b 1  15  2 23.0    0    4 3.03k 1 33.1   -     -    0    0     0        -  28  50    -
    
  • In the MME session you can check the gNodeb and registered UE. The modem has a SIM card with IMSI 310014000000021 as shown in the MME log below. IP address 192.168.2.2 has been allocated to the modem. In the trace below you can see the CN listed as 5GC for the 5GNR SA network.
    (mme) gnb
      PLMN     RAN_ID                        IP:Port #UEctx     TACs
    310014    0x12345                127.0.1.1:47084      0     0x64
    (mme) ue
                SUPI           IMEISV  CN M-TMSI/5G-TMSI REG           TAC #BEARER IP_ADDR
     310014000000021 8642840402469000 5GC     0x73208a4b   Y 310014.  0x64       2 192.168.4.6 2001:468:3000:2:: 192.168.2.2
    (mme)
    
    
  • On sdr1-in3, you can see that the modem shows up as a wwan interface wwp0s20u3i5.
    root@sdr1-in3:~# ifconfig -a
    CTRL: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
            inet 10.37.13.1  netmask 255.255.0.0  broadcast 10.37.255.255
            inet6 fe80::d250:99ff:fed1:5cc8  prefixlen 64  scopeid 0x20<link>
            ether d0:50:99:d1:5c:c8  txqueuelen 1000  (Ethernet)
            RX packets 379688  bytes 91792578 (91.7 MB)
            RX errors 0  dropped 9  overruns 0  frame 0
            TX packets 100257  bytes 7433170 (7.4 MB)
            TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0
            device memory 0x92120000-9213ffff
    
    DATA1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
            inet6 fe80::92e2:baff:fe8f:a114  prefixlen 64  scopeid 0x20<link>
            ether 90:e2:ba:8f:a1:14  txqueuelen 1000  (Ethernet)
            RX packets 373708  bytes 44790598 (44.7 MB)
            RX errors 0  dropped 297144  overruns 0  frame 0
            TX packets 10120  bytes 3386934 (3.3 MB)
            TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0
    
    DATA2: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
            inet6 fe80::92e2:baff:fe8f:a115  prefixlen 64  scopeid 0x20<link>
            ether 90:e2:ba:8f:a1:15  txqueuelen 1000  (Ethernet)
            RX packets 336359  bytes 32135668 (32.1 MB)
            RX errors 0  dropped 297144  overruns 0  frame 0
            TX packets 10136  bytes 3388196 (3.3 MB)
            TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0
    
    enx00e05ce8172d: flags=4098<BROADCAST,MULTICAST>  mtu 1500
            ether 00:e0:5c:e8:17:2d  txqueuelen 1000  (Ethernet)
            RX packets 0  bytes 0 (0.0 B)
            RX errors 0  dropped 0  overruns 0  frame 0
            TX packets 0  bytes 0 (0.0 B)
            TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0
    
    lo: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536
            inet 127.0.0.1  netmask 255.0.0.0
            inet6 ::1  prefixlen 128  scopeid 0x10<host>
            loop  txqueuelen 1000  (Local Loopback)
            RX packets 216  bytes 16383 (16.3 KB)
            RX errors 0  dropped 0  overruns 0  frame 0
            TX packets 216  bytes 16383 (16.3 KB)
            TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0
    
    notused: flags=4099<UP,BROADCAST,MULTICAST>  mtu 1500
            ether d0:50:99:d1:5c:c9  txqueuelen 1000  (Ethernet)
            RX packets 0  bytes 0 (0.0 B)
            RX errors 0  dropped 0  overruns 0  frame 0
            TX packets 0  bytes 0 (0.0 B)
            TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0
            device memory 0x92100000-9211ffff
    
    wwp0s20f0u4u4i5: flags=4291<UP,BROADCAST,RUNNING,NOARP,MULTICAST>  mtu 1500
            inet 192.168.2.2  netmask 255.255.255.252  broadcast 192.168.2.3
            inet6 fe80::e090:63ff:fe1f:6ead  prefixlen 64  scopeid 0x20<link>
            ether e2:90:63:1f:6e:ad  txqueuelen 1000  (Ethernet)
            RX packets 0  bytes 0 (0.0 B)
            RX errors 0  dropped 0  overruns 0  frame 0
            TX packets 0  bytes 0 (0.0 B)
            TX errors 225  dropped 0 overruns 0  carrier 0  collisions 0
    
    
  • Set the IP address of the wwan interface to the one allocated by the MME (192.168.2.2 in this case)
    root@sdr1-in3:~# ifconfig wwp0s20f0u4u4i5 192.168.2.2 netmask 255.255.255.0
    
  • You can now communicate with the base station over the air(5G). The data connection can be tested with ping or iperf as below.
    root@sdr1-in3:~# ping 192.168.2.1
    PING 192.168.2.1 (192.168.2.1) 56(84) bytes of data.
    64 bytes from 192.168.2.1: icmp_seq=1 ttl=64 time=226 ms
    64 bytes from 192.168.2.1: icmp_seq=2 ttl=64 time=17.2 ms
    64 bytes from 192.168.2.1: icmp_seq=3 ttl=64 time=16.2 ms
    64 bytes from 192.168.2.1: icmp_seq=4 ttl=64 time=12.6 ms
    64 bytes from 192.168.2.1: icmp_seq=5 ttl=64 time=32.7 ms
    64 bytes from 192.168.2.1: icmp_seq=6 ttl=64 time=30.7 ms
    64 bytes from 192.168.2.1: icmp_seq=7 ttl=64 time=46.7 ms
    64 bytes from 192.168.2.1: icmp_seq=8 ttl=64 time=37.2 ms
    64 bytes from 192.168.2.1: icmp_seq=9 ttl=64 time=25.6 ms
    64 bytes from 192.168.2.1: icmp_seq=10 ttl=64 time=34.2 ms
    ^C
    --- 192.168.2.1 ping statistics ---
    10 packets transmitted, 10 received, 0% packet loss, time 9014ms
    rtt min/avg/max/mdev = 12.687/47.963/226.198/60.248 ms
    
    
  • iperf testing with server on sdr1-in3 bound to the SIM8200 network interface wwp0s20f0u4u4i5 with IP address 192.168.2.2
    root@sdr1-in3:~# iperf3 -s -B 192.168.2.2
    -----------------------------------------------------------
    Server listening on 5201
    -----------------------------------------------------------
    
    root@srv2-lg1:~# iperf3 -c 192.168.2.2 --port 5201 -t 10 -b 0
    Connecting to host 192.168.2.2, port 5201
    [  4] local 192.168.2.1 port 46572 connected to 192.168.2.2 port 5201
    [ ID] Interval           Transfer     Bandwidth       Retr  Cwnd
    [  4]   0.00-1.00   sec  8.48 MBytes  71.1 Mbits/sec   62    602 KBytes
    [  4]   1.00-2.00   sec  7.50 MBytes  62.9 Mbits/sec  159    672 KBytes
    [  4]   2.00-3.00   sec  9.34 MBytes  78.4 Mbits/sec  349    854 KBytes
    [  4]   3.00-4.00   sec  9.88 MBytes  82.9 Mbits/sec  762    871 KBytes
    [  4]   4.00-5.00   sec  8.95 MBytes  75.1 Mbits/sec  948   1.01 MBytes
    [  4]   5.00-6.00   sec  10.5 MBytes  88.1 Mbits/sec  267    701 KBytes
    [  4]   6.00-7.00   sec  9.51 MBytes  79.7 Mbits/sec  667    693 KBytes
    [  4]   7.00-8.00   sec  9.88 MBytes  82.9 Mbits/sec  454    444 KBytes
    [  4]   8.00-9.00   sec  9.21 MBytes  77.3 Mbits/sec  486    656 KBytes
    [  4]   9.00-10.00  sec  9.63 MBytes  80.8 Mbits/sec  420    645 KBytes
    - - - - - - - - - - - - - - - - - - - - - - - - -
    [ ID] Interval           Transfer     Bandwidth       Retr
    [  4]   0.00-10.00  sec  92.9 MBytes  77.9 Mbits/sec  4574             sender
    [  4]   0.00-10.00  sec  89.1 MBytes  74.7 Mbits/sec                  receiver
    
  • The gNodeb trace looks as follows showing DL data rates around 90Mbps
        2 001 4602 1  14  2 23.4  103 2223 91.5M 1 30.8   -  16.2   51  425 5.09M  1/1.6/5  24  48 -0.2
        2 001 4602 1  15  2 23.3   90 2193 90.7M 1 30.4   -  16.0   63  438 5.21M  1/1.7/5  21  45 -0.2
        2 001 4602 1  15  2 22.8   89 1811 73.6M 1 29.8   -  16.0   68  360 4.14M  1/1.9/5  15  46 -0.2
                   ----DL----------------------- ----UL------------------------------------------------
    UE_ID  CL RNTI C cqi ri  mcs retx txok brate C  snr puc1  mcs rxko rxok brate     #its phr  pl   ta
        2 001 4602 1  15  2 23.1   93 1993 81.3M 1 30.3   -  16.0   57  390 4.42M  1/1.7/5  28  47 -0.2
        2 001 4602 1  15  2 23.4  100 2223 92.5M 1 30.1   -  16.0   65  437 5.30M  1/1.8/5  28  45 -0.2
        2 001 4602 1  15  2 23.1   62 2235 91.2M 1 29.5   -  16.1   53  430 5.13M  1/1.6/5  15  46 -0.2
        2 001 4602 1  15  2 22.6  105 2145 85.9M 1 27.8   -  16.0   77  411 4.77M  1/1.9/5  28  48 -0.2
    

Phone

  • Log into srv1-in3 as 'native' with password 'native'
    ssh native@srv1-in3
    
  • Access srv1-in3 via Chrome remote desktop by following the steps in this tutorial

Note that this step of authorizing remote access needs to be performed after every reboot. On getting access, you should see the desktop as below

No image "chromedesktop.JPG" attached to Tutorials/4G5G/openairinterface5G

  • Launch Vysor to see the phones

No image "vysorphone.JPG" attached to Tutorials/4G5G/openairinterface5G

  • When the Amarisoft base station is running in band n41, you can see that the phone connects to it displaying "Amarisoft - Magic". UE list at the MME shows the phone connected with IMSI 310014000000019.

No image "uelistMME.JPG" attached to Tutorials/4G5G/openairinterface5G

No image "kb2005Amarisoft.JPG" attached to Tutorials/4G5G/openairinterface5G

No image "kb2005Speedtest.JPG" attached to Tutorials/4G5G/openairinterface5G

Using the Web Interface

  • Amarisoft Web Interface can be used to analyze software logs and get information in real time.
  • Point your web browser to http://10.37.1.2/lte/ (10.37.1.2 is the CTRL IP address of srv2-lg1, where the MME and gNodeB are running)
  • Click 'server' in the left client panel, and add MME, gNodeB. Use the appropriate IP addresses and ports as shown below

No image "amarisoft_add_server.JPG" attached to Tutorials/4G5G/openairinterface5G

Server IP addr Port
MME 10.37.1.2 9000
gNodeB 10.37.1.2 9001

No image "amarisoft_web_interface.JPG" attached to Tutorials/4G5G/openairinterface5G

Last modified 12 months ago Last modified on Jan 26, 2024, 12:10:07 PM
Note: See TracWiki for help on using the wiki.